/ [ / [pw] /  k!  ] =



 / { [ / [pw] /  k!  ]    + .+  ] }=




 / [ / [pw] /  k!  ] =



 / [ / [pw] /  k!  ] =





 / { [ / [pw] /  k!  ]    + .+  ] }=



 / { [ / [pw] /  k!  ]    + .+  ] }=







Na teoria da probabilidade e na estatística, a distribuição de Poisson é uma distribuição de probabilidade de variável aleatória discreta que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem independentemente de quando ocorreu o último evento.

A distribuição foi descoberta por Siméon Denis Poisson (1781–1840) e publicada, conjuntamente com a sua teoria da probabilidade, em 1838 no seu trabalho Recherches sur la probabilité des jugements en matières criminelles et matière civile ("Pesquisa sobre a probabilidade em julgamentos sobre matérias criminais e civis"). O trabalho focava-se em certas variáveis aleatórias N que contavam, entre outras coisas, o número de ocorrências discretas de um certo fenômeno durante um intervalo de tempo de determinada duração. A probabilidade de que existam exactamente k ocorrências (k sendo um inteiro não negativo, k = 0, 1, 2, ...) é

onde

  • e é base do logaritmo natural (e = 2.71828...),
  • k! é o fatorial de k,
  • λ é um número real, igual ao número esperado de ocorrências que ocorrem num dado intervalo de tempo. Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usaríamos como modelo a distribuição de Poisson com λ=10/4= 2.5.

Como função de k, esta é a função de probabilidade. A distribuição de Poisson pode ser derivada como um caso limite da distribuição binomial.

Processo de Poisson[editar | editar código-fonte]

Ver artigo principal: Processo de Poisson

A distribuição de Poisson aparece em vários problemas físicos, com a seguinte formulação: considerando uma data inicial (t = 0), seja N(t) o número de eventos que ocorrem até uma certa data t. Por exemplo, N(t) pode ser um modelo para o número de impactos de asteroides maiores que um certo tamanho desde uma certa data de referência.

Uma aproximação que pode ser considerada é que a probabilidade de acontecer um evento em qualquer intervalo não depende (no sentido de independência estatística) da probabilidade de acontecer em qualquer outro intervalo disjunto.

Neste caso, a solução para o problema é o processo estocástico chamado de Processo de Poisson, para o qual vale:

em que λ é uma constante (de unidade inversa da unidade do tempo)[carece de fontes].

Ou seja, o número de eventos até uma época qualquer t é uma distribuição de Poisson com parâmetro λ t.

Comentários

Postagens mais visitadas deste blog